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Abstract
The wormlike chain model of stiff polymers is a nonlinear σ -model in one
spacetime dimension in which the ends are fluctuating freely. This causes
important differences with respect to the presently available theory which
exists only for periodic and Dirichlet boundary conditions. We modify this
theory appropriately and show how to perform a systematic large-stiffness
expansion for all physically interesting quantities in powers of L/ξ , where L
is the length and ξ the persistence length of the polymer. This requires special
procedures for regularizing highly divergent Feynman integrals which we have
developed in previous work. We show that by adding to the unperturbed
action a correction term Acorr, we can calculate all Feynman diagrams with
Green functions satisfying Neumann boundary conditions. Our expansions
yield, order by order, a properly normalized end-to-end distribution function in
arbitrary dimensions d, its even and odd moments and the two-point correlation
function.

PACS number: 05.45.−a

1. Introduction

Recently, the study of biopolymers has become a subject of increasing interest in the research
of biological materials. Forming networks, constituent filaments play an important role in the
structure and function of living cells and other biological entities [1, 2]. Recent advances in
visualizing and manipulating single cytoskeletal filaments [3, 4] and DNA [5, 6] have inspired
the study of conformational characteristics of biopolymers in single-molecule experiments
[7, 8].

Biopolymers may be flexible, such as DNA, semiflexible or stiff, such as actin, or rigid,
such as microtubuli. For a polymer with stiffness κ , the persistence length of tangent–
tangent fluctuations is ξ = 2κ/(d − 1)kBT . Typical values of ξ in biopolymers range from
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several nanometres to a few millimetres. Some examples are DNA, ξ ≈ 50 nm [5]; spectrin,
ξ ≈ 10 nm [4]; actin, ξ ≈ 17 µm; and microtubules, ξ ≈ 5 mm [3].

The length L of a polymer is conveniently measured in units of ξ , which defines a
dimensionless parameter characterizing the inverse stiffness, or the reduced length l = L/ξ ,
which we shall also call flexibility. For high flexibility l, a polymer behaves approximately
like an ideal random chain with freely joint links [9]. For small flexibility l, it behaves like a
rigid rod. Under the influence of longitudinal compressing forces these filaments exhibit the
classical Euler buckling [10].

Most constituent filamentary biopolymers are semiflexible with intermediate values of l.
If l is of the order of unity, the stiffness is important but not overwhelming. Effects of stiffness
have been observed even for large flexibilities up to l ≈ 1000, for instance in long strands of
DNA. Stretching these at large forces has shown significant deviations from a random chain
model [6]. It is therefore important to develop a reliable theory to calculate the influence of
stiffness upon polymers for the entire range of flexibilities [1, 2].

If a polymer has a sizable stiffness, self-avoidance effects can be neglected due to the
energetic suppression of configurations where the filaments fold back onto themselves. An
appropriate model for a theoretical description of semiflexible polymers is the wormlike chain
model proposed by Kratky and Porod in 1949 [11]. This model is formulated most directly in
terms of path integrals. The calculation of the statistical properties has mostly been based so
far on the equivalent diffusion equation [12]. For a recent review, see Yamakawa’s textbook
[13], the review article by Chirikjian and Wang [14] and chapter 15 of the textbook of one of
the authors [15].

The wormlike chain model is the minimal model of a polymer with arbitrary stiffness. A
central feature of this model is the local inextensibility of filaments which is mathematically
accounted for by constraining the length of all tangent vectors to unity. Being a sequence of
d-component unit vectors, a polymer is equivalent to a particle moving on the surface of a
unit sphere in d dimensions, which is described by a quantum-mechanical O(d)-symmetric
nonlinear σ -model in one spacetime dimension.

Another equivalence exists to the continuum limit of the classical Heisenberg chain of
unit magnets. In fact, the partition function of the lattice model was calculated 35 years ago by
Stanley [16] in d = 3 dimensions. In the magnetic context, however, the quantities of interest
in polymer physics were never considered.

Because of the nonlinearity of the wormlike chain model, only a few of the statistical
properties of the stiff polymer can be calculated analytically, the most prominent being the
mean square 〈R2〉 of the end-to-end distance R, and a number of higher moments 〈R2n〉, for
n � 14. The lowest even moments have been calculated a long time ago analytically [17]
and numerically [18] by solving recursively the diffusion equation on the unit sphere in three
dimensions. The calculations have recently been extended for d = 3 up to n = 13 in [19] and
for arbitrary d up to n = 14 in [20]. By this technique it is impossible, however, to derive the
end-to-end distribution function for all persistence lengths. To derive this central quantity of
the wormlike chain, one has to resort to perturbation schemes. So far, only approximate but
highly accurate expressions for the end-to-end distribution of two- and three-dimensional stiff
polymers were obtained for all persistence lengths in [19–21].

The end-to-end distribution function P(R;L) is a principal physical quantity
characterizing the statistical properties of a single polymer of length L. For models like
the wormlike chain which has only short-range interactions between monomers, it gives also
the probability density of finding any two monomers at spatial distance R = x(s) − x(s ′), not
just the endpoints, if we identify L with the distance |s − s ′| between monomers measured
along the chain.
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In the random-chain limit of large l, the distribution P(R;L) is known exactly [13, 15]
and can be approximated by a simple Gaussian. For moderately large l, the corrections to the
Gaussian distribution were calculated up to the order l−2 in three dimensions by Daniels [22],
and for arbitrary d by one of the authors [15].

For polymers close to the rod limit, all moments and the distribution function P(R;L)

were calculated as expansions in powers of l for d = 3 in [17, 23, 24]. In the same limit,
the distribution function has recently been found as an infinite series of parabolic cylinder
functions for d = 2, and of Hermite polynomials for d = 3 in [25]. The generalization to d
dimensions is given in chapter 15 of the textbook [15].

These distributions were derived from the path integral of a simple harmonic oscillator
[25]. For large stiffness, they are in good quantitative agreement with Monte Carlo data. They
disagree, however, with the exact expansions of [23], except for a few lowest orders. Since the
failure has a perturbative character, it cannot be compensated by a proper normalization. The
reason is that the harmonic path integral approximates correctly the wormlike chain model
only at lowest flexibility. It certainly needs higher-order corrections.

If we want to calculate such corrections in the path integral formalism, the choice of
physically appropriate boundary conditions is essential. The open-end boundary conditions of
the wormlike chain model are quite tedious for the perturbative calculation of path integrals.
For a harmonic oscillator, they can be replaced by the simpler Neumann boundary conditions,
as proposed in [25]. However, to describe the properties of a wormlike chain, the harmonic
fluctuations must be suppressed at the endpoints. This can be done by incorporating an
important correction factor into the path integral with Neumann boundary conditions.

Calculation schemes based on periodic boundary conditions were considered in [26, 27].
Path integrals for modified wormlike chain models with softened inextensibility conditions
have been suggested in [28–31]. These models, however, can describe the behaviour of the
stiff polymer only roughly. Some conformational properties were calculated in [32, 33].
Additional insights into the properties of the end-to-end distribution function of polymers
with intermediate stiffness have also been provided recently by [34, 35].

Despite a number of recent developments, the theoretical understanding of the statistical
properties of a semiflexible chain in isolation remains much less developed than for the flexible
chain, and experimental data are often interpreted within the theoretical framework established
for random chains or rigid rods, respectively. It is therefore important to find a unified analytic
approximation procedure which will yield a reliable end-to-end distribution over the entire
range of stiffnesses. In particular, the crossover region between the random chain properties
at low stiffness and the rigid-rod limit should be described properly.

In this paper, we develop a systematic path integral approach to find the properties of
the wormlike chain model near the rod limit. We shall set up a perturbation theory for a
large-stiffness expansion in powers of the flexibility l and show how to calculate all expansion
coefficients analytically. All moments, the radial end-to-end distribution function, and the
two-point correlation function will be obtained in arbitrary dimensions d. By this unified
approach we reproduce correctly the results of [23], and show how to go systematically
beyond the approximate large-stiffness result of [25] for a polymer in d = 3 dimensions.

2. Wormlike chain model

In the wormlike chain model, the polymer is described by a smooth curve x(s) in d-dimensional
flat space, with the components xi(s), i = 1, . . . , d. The parameter s ∈ (0, L) is the arc
length along the curve defined by ds =

√
(dx)2. In this parametrization, the derivatives
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dx(s)/ds ≡ u(s) are tangent vectors of unit length:

|u(s)| = 1. (1)

This important property accounts for the local inextensibility of a polymer. All vectors u(s)

lie on a surface of a unit sphere in d dimensions which has an area Sd = 2πd/2/�(d/2) and a
constant scalar curvature R = (d − 1)(d − 2).

The local curvature of the polymer is k(s) = |u̇(s)|, where u̇(s) = du(s)/ds. The bending
energy of the wormlike chain model is quadratic in k(s):

Ec[u] = kBT

2ε

∫ L

0
ds u̇2(s), (2)

where we have introduced the inverse stiffness ε = kBT /κ in units of kBT . The flexibility l is
simply related to ε by l = εL(d − 1)/2.

The statistical properties of the model are completely determined by the partition function

Z = S−1
d

∫
ddub δ

(
u2

b − 1
) ∫

ddua δ
(
u2

a − 1
)
z(ub, ua), (3)

where z(ub, ua) is a partition function density defined by the path integral

z(ub, ua) = eεLR/8
∫ u(L)=ub

u(0)=ua

Ddu(s)δ[u2(s) − 1] exp

(
− 1

2ε

∫ L

0
ds u̇2(s)

)
. (4)

This coincides with the path integral for the imaginary-time evolution amplitude 〈ubL|ua0〉
of a particle on the surface of the unit sphere in d dimensions which possesses an obvious
O(d)-symmetry. The length parameter s plays the role of the imaginary time or pseudo-time,
and the bending energy (2) in the exponent of (4) is proportional to the Euclidean action A of
a particle: Ec[u] = kBTA[u]. We shall often use this analogy in the following.

The delta-functional in the integrand of (4) accounts for the local inextensibility (1). At
the endpoints s = 0, L, this constraint is also accounted for by the two ordinary δ-functions
in equation (3). The restricted ordinary integrals over the initial and final u-values lead to
the partition function with open ends (3). The path integral (4) for the density is calculated
with fixed ends, i.e., with Dirichlet boundary conditions (DBC). The extra covariant prefactor
eεLR/8 is necessary to reproduce the correct diffusion equation on the unit sphere [15, 38]
whose Hamiltonian is a Laplace–Beltrami operator.

The principal physical quantity of a semiflexible polymer is the distribution function

P(R;L) =
〈
δ(d)

(
R −

∫ L

0
ds u(s)

)〉
, (5)

with R = x(L) − x(0) being the end-to-end vector. It possesses the moments

〈(R2)n/2〉 =
〈[∫ L

0

∫ L

0
ds ds ′ u(s) · u(s ′)

]n/2
〉

, (6)

which have been calculated exactly for even n up to high n by solving the diffusion equation
on a sphere. From this solution we also know the rotationally invariant two-point correlation
function

G(s, s ′) = 〈u(s) · u(s ′)〉 (7)

as being simply

G(s, s ′) = exp(−|s − s ′|/ξ) (8)

displaying clearly the exponential decay of tangent–tangent correlations over the persistence
length ξ . We shall show that all expectation values (5)–(7) are calculable from the path integral
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representation (3) of the partition function by inserting the quantities inside the Dirac brackets
into the integrand of equation (4).

The inextensibility condition (1) makes the path integral non-Gaussian. For an analytic
treatment, we may follow two methods. One may either solve the inextensibility condition (1)
explicitly. Then the O(d)-symmetry is realized nonlinearly. In geometric language, O(d) is
the isometry of the metric on a surface of the sphere. This method will be used in this paper
to develop the large-stiffness perturbation expansion of path integrals, in which all physical
quantities are expressed as power series in l. A second method may be based on enforcing the
inextensibility condition (1) with the help of a Lagrange multiplier. This leads to calculations
of the physical quantities as power series in 1/d to be presented in a forthcoming paper [40].
Both options lead to systematic approximation schemes.

3. Large-stiffness expansion

The large-stiffness expansion of the path integral in powers of ε ∝ l is a special case
of weak-coupling perturbation expansions, which have recently been developed by us for
quantum-mechanical path integrals of nonlinear σ -models with various boundary conditions
[15, 36–39].

3.1. Calculation with Dirichlet boundary conditions

To make contact with the methods developed in the previous papers, we eliminate the
δ-functional in (4) by setting u(s) = (q0(s), qµ(s),) with µ = 1, . . . , d − 1, and integrating
over q0(s), which yields q0(s) = σ(s) ≡

√
1 − q2(s). The partition function density becomes

z(qb, qa) =
∫

DBC
Dd−1q(s)

√
g(q(s)) exp

{
− 1

2ε

∫ L

0
ds gµν(q)q̇µ(s)q̇ν(s) + εL

R

8

}
, (9)

with the metric gµν(q) = δµν + (1 − q2)−1qµqν and the determinant g(q) = (1 − q2)−1.
The square root in the invariant measure can be rewritten formally as

∏
s

√
g(q(s)) = exp

{
1

2

∑
s

log g(q(s))

}
= exp

{
1

2

∫ L

0
ds δ(s, s) log g(q(s))

}
, (10)

where the quantity
∫ L

0 ds δ(s, s) = Lδ(0) counts the infinite number of eigenvalues of
the operator −δµν(d/ds)2 in the space of functions qµ(s). Including the exponent of (10)
into the action we are left with the partition function density

z(qb, qa) =
∫

DBC
Dd−1q(s) exp{−A[q]}, (11)

with the Euclidean action

A[q] = 1

2ε

∫ L

0
ds[gµν(q)q̇µ(s)q̇ν(s) − εδ(s, s) log g(q(s))] − εL

R

8
. (12)

Repeated indices are summed as usual, i.e., qµqµ = q2. In a perturbation expansion of the
path integral (9), the inverse stiffness ε ∝ l plays the role of a coupling constant. The large-
stiffness or small-flexibility expansion is a weak-coupling expansion. The subscript DBC in
equation (9) emphasizes the Dirichlet boundary conditions qµ(L) = q

µ

b , qµ(0) = q
µ
a .

To derive the perturbation expansion of [15, 36–39], it is convenient to rescale the
coordinates qµ(s) → √

εqµ(s). This removes ε from the quadratic part of the action. The
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path integral for ε = 0 is therefore Gaussian and determines the basic free correlation function
or propagator

〈qµ(s)qν(s ′)〉0 = δµν	(s, s ′), (13)

where 	(s, s ′) is the Green function of the operator −d2
s in the space of functions q(s) with

appropriate boundary conditions.
An expansion of the action in powers of ε organizes the infinitely many interaction terms.

They give rise to fluctuation corrections which are calculated by performing all possible Wick
contractions. These consist of multiple integrals over the pseudo-time s containing products
of propagators (13) and their s-derivatives. These integrals are mathematically undefined,
since derivatives of the propagator (13) contain generalized functions or distributions, such
as Heaviside functions 
(s − s ′) and Dirac δ-functions δ(s − s ′). The problem of defining
these integrals has, fortunately, been solved in our previous work [36–38]. We have shown
that all these highly singular integrals are defined uniquely on the basis of the simple
physical requirement that the path integrals should be independent of the coordinates used to
parametrize the unit sphere. The new integration rules are valid for path integrals with all
boundary conditions. Moreover, they are in complete agreement with much more cumbersome
calculations in D = 1 − ε dimensions, in which the limit ε → 0 is taken at the end
(dimensional regularization). For one-dimensional σ -models with Dirichlet and periodic
boundary conditions, our rules have led to a perfect cancellation of all UV-divergent diagrams
involving powers of δ(0) in each perturbative order [37–39]. This permitted us to calculate
finite fluctuation corrections to any desired order in perturbation theory.

The method developed in [15, 36–39] can be used now to derive the partition function
with open ends (3). In coordinates qµ(s), this quantity takes the form

Z = S−1
d

∫
dd−1qb

√
g(qb)

∫
dd−1qa

√
g(qa)z(qb, qa). (14)

This way of writing Z suggests that we must compute the path integral (9) with Dirichlet
boundary conditions, and subsequently perform two ordinary integrals over initial and final
qµ-values. The advantage of this procedure would be that all necessary tools are available
from our previous work in [15, 38]. We would expand the action (12) in powers of the
coordinates qµ(s) around the straight-line solution connecting the endpoints, and evaluate
higher-order fluctuation corrections with the help of the basic propagator (13) with Dirichlet
boundary conditions

	D(s, s ′) = −|s − s ′|/2 + (s + s ′)/2 − ss ′/L. (15)

The resulting expansion of z(qb, qa) involves the geometric invariants formed from the
curvature tensor on q-space. For the unit sphere in d dimensions, only powers of the curvature
scalar R = (d − 1)(d − 2) remain, and the expansion has the form

z(qb, qa) = 〈qbL|qa0〉 = e−Acl[	q;ε]

√
2πL

d

∞∑
k=0

Lkak(	q; ε), (16)

where the classical action in the exponent depends on 	qµ ≡ (qb − qa)
µ as

Acl[	q; ε] ≡ (	q)2

2L
+ ε

[(	q)2]2

6L
+ · · · , (17)

and the lowest coefficients ak(	q; ε) have the small-ε expansions

a0(	q; ε) ≡ 1 + ε
(d − 2)

12
(	q)2 + ε2 (d − 2)(5d − 6)

1440
[(	q)2]2 + · · · ,
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a1(	q; ε) ≡ ε
(d − 1)(d − 2)

12
+ ε2 (d − 2)(5d2 − 17d + 18)

720
(	q)2 + · · · ,

a2(	q; ε) ≡ ε2 (d − 1)(d − 2)(5d2 − 17d + 18)

1440
+ · · · .

(18)

From this we can immediately find the partition function (14) with open ends. Inserting
(16) into (14) yields

Z = 1, (19)

to all orders in ε.

3.2. Calculation with Neumann boundary conditions

For a calculation of the important polymer properties (5)–(7) this procedure, although well
defined, would be too tedious. To save efforts, we prefer to do the calculations from a
path integral in which the ordinary integrals over endpoints in equation (3) are included in
the path integral by suitable boundary conditions. For a simple harmonic oscillator, these were
shown in [15] to be the Neumann boundary conditions (NBC), as anticipated by [25]. These
conditions may, however, not be used directly for calculating the fluctuation corrections since
they are physically incorrect. The Neumann boundary conditions admit only fluctuations in
which the endpoints have zero derivatives q̇µ(0) = q̇µ(L) = 0, thus neglecting all paths with
nonzero derivatives. We shall see that this omission can be compensated by adding to the
action an important correction term, so that Neumann boundary conditions may be used after
deriving the correct perturbation expansions.

We shall evaluate the quantities (5)–(7) from path integrals with Neumann boundary
conditions by replacing the combined measure of equations (3) and (9) as follows:∫

dd−1qb

√
g(qb)

∫
dd−1qa

√
g(qa)

∫
DBC

Dd−1q(s) →
∫

NBC
Dd−1q(s)J [qb, qa], (20)

where the Jacobian factor J [qb, qa] corrects for the missing endpoint fluctuations when
restricting the paths to zero derivatives at the ends. This factor may be attributed to an
extra action at the endpoints,

Acor[qb, qa] = −log J [qb, qa] = −[q2(0) + q2(L)]/4, (21)

to be added to (12).
Our correction term (21) should no be confused with a similar-looking but completely

unrelated term λ{[u2(0) − 1] + [u2(L) − 1]} in harmonic models of stiff polymers [29–31],
where it serves to enforce approximately the inextensibility (1) at the endpoints, which in our
approach is satisfied exactly for the entire polymer.

Thus we shall calculate the polymer properties (5)–(7) by performing the averages inside
with respect to the path integral representation for Z with Neumann boundary conditions

Z = S−1
d

∫
NBC

Dd−1q(s) exp{−A[q] − Acor[qb, qa]}. (22)

The perturbation expansion of this expression is not straightforward since with Neumann
boundary conditions the fluctuations of the free part of the action contain d − 1 zero modes.
These are due to the d − 1 constant solutions qµ(s) = cµ of the ‘equation of motion’
−(d/ds)2qµ(s) = 0. Their symmetry origin lies in the d − 1 isometries of a sphere in
d dimensions. They prevent us from inverting the operator −(d/ds)2 to obtain a perturbative
propagator (13). The zero modes must first be extracted from the path integral.
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The proper way of doing this has recently been exhibited for one-dimensional path
integrals of a nonlinear σ -model with periodic paths in [39]. The method can easily be
modified to apply to Neumann boundary conditions. To avoid overcounting of the constant
paths in the elimination process, we have to fix a coordinate system qµ(s), for example, by
placing the centre of mass of a polymer at the origin. Let us assume that the end-to-end
distance vector R = ∫ L

0 ds u(s) points towards the dth direction. In coordinates qµ(s), this
yields the zero average

L−1
∫ L

0
ds qµ(s) = 0, µ = 1, . . . , d − 1. (23)

We therefore introduce the measure of fluctuations without the dangerous d − 1 zero modes
as

D′d−1q(s) = Dd−1q(s)δ(d−1)

[∫ L

0
ds qµ(s)

]
(24)

to be used instead of the measure in equation (20).
This can be done most directly for the distribution function (5). Introducing the reduced

end-to-end distance r ≡ |R|/L, we represent this quantity via the path integral

P(r;L) = S−1
d

∫
NBC

D′d−1q(s)δ

(
r − L−1

∫ L

0
ds

√
1 − q2(s)

)
exp{−A[q] − Acor[qb, qa]}.

(25)

In turn, the partition function (22) can be obtained from the distribution (25) as

Z = Sd

∫ ∞

0
dr rd−1P(r;L), (26)

where the prefactor Sd reflects the rotation invariance of P(r;L). Since the zero modes are
already excluded from the path integration in equation (25), we integrate simply over r in
equation (26) with help of the δ-function in equation (25) to define the path integral (22). This
produces a further contribution to the action (12),

AFP[q] = −(d − 1) log

(
L−1

∫ L

0
ds

√
1 − q2(s)

)
, (27)

to be referred to as Faddeev–Popov action. For periodic paths this action was found in our paper
[39]. It is a logarithmic Jacobian which compensates the distorting effect of condition (23)
on the measure of path integration. This procedure of extracting the zero modes guarantees
therefore the independence of path integrals of the choice of the coordinate system (23) used
in the perturbative calculation.

Thus we rewrite the partition function (22) as a path integral

Z =
∫

NBC
D′d−1q(s) exp

{ − A[q] − Acor
e [qb, qa] − AFP[q]

}
, (28)

where the paths not only satisfy the Neumann boundary conditions, but have also no zero
modes. Note that the prefactor Sd in (22), the volume of the isometries, is now absent.

The expectation values in equations (5)–(7) can now be defined with respect to this
partition function as follows:

〈· · ·〉 ≡
∫

NBC
D′d−1q(s)(· · ·) exp{−A[q] − Acor[qb, qa] − AFP[q]}. (29)

Note that there is no need to normalize the path integral (29) by Z = Z0, since the partition
function (28) is equal to unity as in equation (19). This will be verified order by order in
perturbation expansion of the path integral (28).
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With the definition (29), the radial distribution function is given by the path integral

P rad(r;L) =
〈
δ

(
r − L−1

∫ L

0
ds

√
1 − q2(s)

)〉

=
∫

NBC
D′d−1q(s)δ

(
r − L−1

∫ L

0
ds

√
1 − q2(s)

)
× exp{−A[q] − Acor[qb, qa] − AFP[q]}

= Sdr
d−1P(r;L), (30)

where the Faddeev–Popov action (27) is illuminated by the δ-function, whereas the moments
(6) of the reduced distance r are found from

〈(R2/L2)n/2〉 = 〈rn〉 =
〈(

L−1
∫ L

0
ds

√
1 − q2(s)

)n
〉

=
∫

NBC
D′d−1q(s)

(
L−1

∫ L

0
ds

√
1 − q2(s)

)n

× exp{−A[q] − Acor[qb, qa] − AFP[q]}
=

∫
NBC

D′d−1q(s) exp
{−A[q] − Acor

e [qb, qa] − AFP
n [q]

} ≡ Zn. (31)

This looks similar to equation (28) except for the last action term which now is

AFP
n [q] = −(n + d − 1) log

(
L−1

∫ L

0
ds

√
1 − q2(s)

)
, (32)

rather than (27). The path integral (31) abbreviated by Zn comprises for n = 0 the unit
partition function (28): Z0 = Z = 1.

With the zero modes subtracted, the Green function with Neumann boundary conditions
representing the lines in the Feynman diagrams acquires the form

	′
N(s, s ′) = L/3 − |s − s ′|/2 − (s + s ′)/2 + (s2 + s ′2)/2L, (33)∫ L

0
ds 	′

N(s, s ′) = 0. (34)

In the following we shall simply write 	(s, s ′) for 	′
N(s, s ′), for brevity.

4. Partition function and all moments up to four loops

We present now the explicit perturbative calculation of the partition function (28) and all
moments (31) to order ε2 ∝ l2. This requires evaluating Feynman diagrams up to four
loops. As mentioned before, the fluctuation corrections involve integrals over products of
distributions, which will be calculated unambiguously using the rules derived in [37, 38].

For perturbation calculation, we rescale the coordinates qµ(s) → √
εqµ(s) and rewrite

the path integral (31) as

Zn =
∫

NBC
D′d−1q(s) exp

{−Atot
,n [q; ε]

}
, (35)

where the total action Atot
,n [q; ε] ≡ A[q; ε] + Acor[qb, qa; ε] + AFP

,n [q; ε] reads explicitly,

Atot
,n [q; ε] =

∫ L

0
ds

[
1

2

(
q̇2 + ε

(qq̇)2

1 − εq2

)
+

1

2
δ(0) log(1 − εq2)

]

− σn log

[
1

L

∫ L

0
ds

√
1 − εq2

]
− 1

4
ε[q2(0) + q2(L)] − εL

R

8
. (36)
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The constant σn is an abbreviation for σn ≡ n + (d − 1). For n = 0 the path integral (35) must
yield the normalized partition function Z = Z0 = 1.

At ε = 0, the total action (36) contains only the kinetic term

A0[q] = 1

2

∫ L

0
ds q̇2(s). (37)

With this free action, the path integral (35) becomes Gaussian which will be defined as

Z0 ≡
∫

NBC
D′d−1q(s) e−A0[q] =

∫
NBC

D′d−1q(s) e−(1/2)
∫ L

0 ds q̇2(s) = 1. (38)

To find the corrections, we split

Atot
,n [q; ε] = A0[q] + Aint

,n [q; ε], (39)

where the interaction action Aint
,n [q; ε] has to be expanded in powers of small ε. Its large-

stiffness expansion starts out as

Aint
,n [q; ε] = εAint 1

,n [q] + ε2Aint 2
,n [q] + · · · . (40)

The first expansion term is

Aint 1
,n [q] = 1

2

∫ L

0
ds{[q(s)q̇(s)]2 − ρn(s)q

2(s)} − L
R

8
, (41)

where ρn(s) ≡ δn + [δ(s) + δ(s − L)] /2 with δn = δ(0) − σn/L. The second expansion term
is given by

Aint 2
,n [q] = 1

2

∫ L

0
ds

{
[q(s)q̇(s)]2 − 1

2

[
δ(0) − σn

2L

]
q2(s)

}
q2(s)

+
σn

8L2

∫ L

0
ds

∫ L

0
ds ′ q2(s)q2(s ′). (42)

The perturbation expansion of the path integral (35) in powers of ε is an expansion in
terms of expectation values to be calculated with respect to the Gaussian integral (38). For an
arbitrary functional F [q] of q(s), these will be denoted by

〈F [q]〉0 ≡
∫

NBC
D′d−1q(s)F [q] e−(1/2)

∫ L

0 ds q̇2(s). (43)

With this notation, the perturbative expansion of (35) reads

Zn = 1 − 〈
Aint

,n [q; ε]
〉
0

+ 1
2

〈
Aint

,n [q; ε]2
〉
0
− · · ·

= 1 − ε
〈
Aint 1

,n [q]
〉
0

+ ε2 (− 〈
Aint 2

,n [q]
〉
0

+ 1
2

〈
Aint 1

,n [q]2〉
0

) − · · · . (44)

The expectation values 〈· · ·〉0 are evaluated by performing all possible Wick contractions with
the basic propagator (13) and the Green function (33) of the unperturbed action (37). The
relevant loop integrals Ii and Hi are calculated with our regularization rules when necessary
and are listed in appendices A and B.

We now state the results for various terms appearing in equation (44):

〈
Aint 1

,n [q]
〉
0

= (d − 1)

2

[
σn

L
I1 + dI2 − 1

2
	(0, 0) − 1

2
	(L,L)

]
− L

R

8
= L

(d − 1)n

12
, (45)

〈
Aint 2

,n [q]
〉
0

= (d2 − 1)

4

[(
δ(0) +

σn

2L

)
I3 + 2(d + 2)I4

]
+

(d − 1)σn

8L2

[
(d − 1)I 2

1 + 2I5
]

= L3 (d2 − 1)

120
δ(0) + L2 (d − 1)

1440
[(25d2 + 36d + 23) + n(11d + 5)], (46)
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1

2

〈
Aint 1

,n [q]2
〉
0

= L2

2

{
(d − 1)L

12

[(
δ(0) +

d

2L

)
−

(
δn +

2

L

)]
− R

8

}2

+
(d − 1)

4

[
Hn

1 − 2
(
Hn

2 + Hn
3 − H5

)
+ H6 − 4d

(
Hn

4 − H7 − H10
)

+ H11 + 2d2(H8 + H9)
]

+
(d − 1)

4
[dH12 + 2(d + 2)H13 + dH14]

= L2

2

[
(d − 1)n

12

]2

+ L3 (d − 1)

120
δ(0)

+ L2 (d − 1)

1440
[(25d2 − 22d + 25) + 4(n + 4d − 2)]

+ L3 (d − 1)d

120
δ(0) + L2 (d − 1)

720
(29d − 1). (47)

Inserting these results into equation (44), we obtain the partition function and all moments up
to order ε2 ∝ l2:

Zn = 1 − εL
(d − 1)n

12
+ ε2L2

[
(d − 1)2n2

288
+

(d − 1)(4n + 5d − 13)n

1440

]
− O(ε3)

= 1 − n

6
l +

[
n2

72
+

(4n + 5d − 13)n

360(d − 1)

]
l2 − O(l3). (48)

For n = 0, this yields the properly normalized partition function Z = Z0 = 1. For n = 2, 4,
we obtain the known even moments in d dimensions

〈r2〉 = 1 − l

3
+

1

12
l2 + · · · , (49)

〈r4〉 = 1 − 2l

3
+

25d − 17

90(d − 1)
l2 + · · · . (50)

In addition, we find all odd moments up to order l2, the lowest being

〈r〉 = 1 − l

6
+

5d − 7

180(d − 1)
l2 + · · · , (51)

〈r3〉 = 1 − l

2
+

25d − 4

30(d − 1)
l2 + · · · . (52)

Restricted to d = 3 dimensions, all moments (48) are in full agreement with the exact
expansions of [23] obtained by solving the diffusion equation on a unit sphere.

5. Correlation function up to four loops

As an important test of this perturbation theory, we calculate the correlation function (7) up to
four loops and verify its agreement with the exact expression (8).

Starting point is the path integral representation (29) with Neumann boundary conditions
for the two-point correlation function

G(s, s ′) = 〈u(s) · u(s ′)〉 =
∫

NBC
D′d−1q(s)U [q, q ′; ε] exp

{−Atot
,0 [q; ε]

}
, (53)

with the action of equation (36) for n = 0. The functional in the integrand U [q, q ′] ≡
U(q(s), q(s ′)) is the scalar product u(s) · u(s ′) expressed in terms of independent coordinates
qµ as

U(q(s), q(s ′)) ≡ u(s) · u(s ′) =
√

1 − q2(s)
√

1 − q2(s ′) + q(s)q(s ′). (54)
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After rescaling qµ → √
εqµ and expanding in powers of ε, this becomes

U [q, q ′; ε] = 1 + εU1[q, q ′] + ε2U2[q, q ′] + · · · , (55)

with

U1[q, q ′] ≡ U1(q(s), q(s ′)) = q(s)q(s ′) − 1
2q2(s) − 1

2q2(s ′), (56)

U2[q, q ′] ≡ U2(q(s), q(s ′)) = 1
4q2(s)q2(s ′) − 1

8 [q2(s)]2 − 1
8 [q2(s ′)]2. (57)

We shall attribute the integrand U [q, q ′; ε] to an interaction AU[q; ε] defined by

U [q, q ′; ε] ≡ exp(−AU[q; ε]), (58)

which has to be added to the interaction action in equation (36) with n = 0. The small
ε-expansion, similar to equation (40), reads

AU[q; ε] = −εU1[q, q ′] + ε2
[−U2[q, q ′] + 1

2U 2
1 [q, q ′]

] − · · · . (59)

Thus, the perturbation expansion of the path integral (53) takes the form

G(s, s ′) = 1 − 〈(
Aint

,0 [q; ε] + AU[q; ε]
)〉

0 + 1
2

〈(
Aint

e,0[q; ε] + AU
e [q; ε]

)2〉
0 − · · · . (60)

Collecting the expansions terms of equations (40) and (59) in equation (60) and taking into
account the unit normalization of the partition function Z = Z0 = 1 reduces this to

G(s, s ′) = 1 + ε〈U1[q, q ′]〉0 + ε2
[〈U2[q, q ′]〉0 − 〈U1[q, q ′]Aint 1

,0 [q]〉0
]

+ · · · , (61)

where the expectation values can be calculated, as before, using the propagator (13)
with the Green function (33). For the calculation of the rotationally invariant quantity
G(s, s ′) = G(s − s ′), however, the Green function 	(s, s ′) + C must be just as good a
Green function satisfying Neumann boundary conditions as 	(s, s ′).

We illustrate this explicitly by setting C = L(a − 1)/3 with an arbitrary constant a,
and calculating the expectation values in equation (61) using the modified Green function.
Details are given in appendix C (see equation (C.1)), where we list various expressions and
integrals appearing in the Wick contractions of expansion (61). Using these results, we find
the manifestly a-independent terms up to second order in ε:

〈U1[q, q ′]〉0 = (d − 1)	F(s − s ′) = − (d − 1)

2
|s − s ′|, (62)

〈U2[q, q ′]〉0 − 〈
U1[q, q ′]Aint 1

,0 [q]
〉
0

= (d − 1)

[
1

2
D1 − 1

8
(d + 1)D2

2 − K1 − dK2 − (d − 1)

L
K3 +

1

2
K4 +

1

2
K5

]

= 1

8
(d − 1)2(s − s ′)2. (63)

This leads to the two-point correlation function

G(s, s ′) = 1 − ε
(d − 1)

2
|s − s ′| + ε2 (d − 1)2

8
(s − s ′)2 − O(ε3)

= 1 − |s − s ′|
ξ

+
(s − s ′)2

2ξ 2
− · · · (64)

in agreement with the small-flexibility expansion of the exact expression (8) up to the second
order in 1/ξ .
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6. Alternative calculation of all moments

It is interesting to recapitulate the result (48) by calculating all moments (6) once more in the
way used in the previous section. To this end, we start from the path integral with Neumann
boundary conditions

〈rn〉 =
∫

NBC
D′d−1q(s)Rn[q; ε] exp

{−Atot
,0 [q; ε]

}
, (65)

where the action Atot
,0 [q; ε] is the same as in equation (53), while the functional R2[q]

corresponds to the square of the reduced distance r2 represented now in terms of the d − 1
coordinates qµ(s) with the help of equation (54) as

R2[q] = L−2
∫ L

0
ds

∫ L

0
ds ′ U(q(s), q(s ′)). (66)

Note that in terms of the reduced distance r, the moments (65) make sense initially for all n.
Using equations (55)–(57) yields the small ε-expansion

R2[q; ε] = 1 + εR2
1[q] + ε2R2

2[q] + · · · , (67)

with

R2
1[q] = L−2

∫ L

0
ds

∫ L

0
ds ′ U1(q(s), q(s ′)) = −L−1

∫ L

0
ds q2(s), (68)

R2
2[q] = L−2

∫ L

0
ds

∫ L

0
ds ′ U2(q(s), q(s ′))

= −(4L)−1
∫ L

0
ds[q2(s)]2 + (2L)−2

∫ L

0
ds

∫ L

0
ds ′ q2(s)q2(s ′), (69)

where we have used condition (23).
The interaction associated with Rn[q; ε] is

AR[q; ε] = −n

2
log R2[q; ε] = −ε

n

2
R2

1[q] + ε2 n

2

{
−R2

2[q] +
1

2

(
R2

1[q]
)2

}
− · · · . (70)

Adding (70) to the action Atot
,0 [q; ε] leads to the perturbation expansion of the path integral

(65) up to second order in ε:

〈rn〉 = 1 − 〈(
Aint

e,0[q; ε] + AR
e [q; ε]

)〉
0 +

1

2

〈(
Aint

,0 [q; ε] + AR[q; ε]
)2〉

0

= 1 + ε
n

2

〈
R2

1[q]
〉
0 + ε2 n

2

[〈
R2

2[q]
〉
0 − 〈

R2
1[q]Aint 1

e,0 [q]
〉
0 +

1

4
(n − 2)

〈(
R2

1[q]
)2〉

0

]
. (71)

Most of the expectation values appeared here are related through equations (68) and (69) to
those obtained before in equations (62) and (63). For these, we find

〈
R2

1[q]
〉
0 = 1

L2

∫ L

0
ds

∫ L

0
ds ′〈U1(q(s), q(s ′))〉0

= − (d − 1)

2L2

∫ L

0
ds

∫ L

0
ds ′|s − s ′| = −L

(d − 1)

6
, (72)

〈
R2

2[q]
〉
0 − 〈

R2
1[q]Aint 1

e,0 [q]
〉
0

= 1

L2

∫ L

0
ds

∫ L

0
ds ′[〈U2(q(s), q(s ′))〉0 − 〈

U1(q(s), q(s ′))Aint 1
e,0 [q]

〉
0

]
= (d − 1)2

8L2

∫ L

0
ds

∫ L

0
ds ′(s − s ′)2 = L2 (d − 1)2

48
. (73)
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The last expectation value in equation (71) is calculated as〈(
R2

1[q]
)2〉

0 = 1

L2

∫ L

0
ds

∫ L

0
ds ′〈q2(s)q2(s ′)〉0

= (d − 1)

L2

[
(d − 1)I 2

1 + 2I5
] = L2 (d − 1)(5d − 1)

180
. (74)

Inserting the results (72)–(74) into equation (71), we obtain the same perturbation expansion
for all moments up to order l2 as in equation (48), but in the slightly different form

〈rn〉 = 1 − εL
(d − 1)n

12
+ ε2L2

[
(d − 1)2n

96
+

(d − 1)(5d − 1)n(n − 2)

1440

]
− O(ε3)

= 1 − n

6
l +

[
n

24
+

(5d − 1)n(n − 2)

360(d − 1)

]
l2 − O(l3). (75)

7. Radial distribution up to four loops

We now turn to the calculation of the most important quantity characterizing a polymer, the
distribution function (25). Going over to the Fourier transform of the δ-function, which
enforces the reduced end-to-end distance r = L−1

∫ L

0 ds
√

1 − q2(s) in equation (25), yields
the Fourier decomposition

P(r;L) = S−1
d

∫
dk

2π
e−ik(r−1)P (k;L), (76)

where P(k;L) has to be calculated from the path integral with Neumann boundary conditions

P(k;L) =
∫

NBC
D′d−1q(s) exp

{−Atot
,k [q; ε]

}
. (77)

The resulting total action

Atot
,k [q] ≡ A[q] + Acor[qb, qa] − (ik/L)

∫ L

0
ds

(√
1 − q2(s) − 1

)
, (78)

after rescaling the coordinates qµ(s) → √
εqµ(s), reads explicitly

Atot
,k [q; ε] =

∫ L

0
ds

{
1

2

[
q̇2 + ε

(qq̇)2

1 − εq2

]
+

1

2
δ(0) log(1 − εq2) − ik

L

(√
1 − εq2 − 1

)}

− 1

4
ε[q2(0) + q2(L)] − εL

R

8
≡ A0[q] + Aint

,k [q; ε]. (79)

As before in equation (40), we expand the interaction in powers of a small coupling
constant ε. The first term coincides with equation (41), except that ρn(s) is now replaced by
ρk(s) = δk + [δ(s) + δ(s − L)]/2 with δk = δ(0) − ik/L:

Aint 1
,k [q] =

∫ L

0
ds

1

2
[(q(s)q̇(s))2 − ρk(s)q

2(s)] − L
R

8
. (80)

The second expansion term Aint 2
,k [q] is simpler than that in equation (42) by not containing the

last non-local contribution

Aint 2
,k [q] =

∫ L

0
ds

1

2

{
[q(s)q̇(s)]2 − 1

2

(
δ(0) − ik

2L

)
q2(s)

}
q2(s). (81)

Apart from that, the perturbation expansion of the path integral (77) has the same general form
as in equation (44) and, therefore, reads

P(k;L) = 1 − 〈
Aint

,k [q; ε]
〉
0

+ 1
2

〈
Aint

e,k[q; ε]2
〉
0
− · · ·

= 1 − ε
〈
Aint 1

,k [q]
〉
0

+ ε2
(− 〈

Aint 2
e,k [q]

〉
0

+ 1
2

〈
Aint 1

,k [q]2
〉
0

) − · · · . (82)
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The expectation values can be expressed in terms of the same integrals listed in appendices A
and B as follows:

〈
Aint 1

,k [q]
〉
0 = (d − 1)

2

[
ik

L
I1 + dI2 − 1

2
	(0, 0) − 1

2
	(L,L)

]
− L

R

8

= −L
(d − 1) [(d − 1) − ik]

12
, (83)

〈
Aint 2

,k [q]
〉
0 = (d2 − 1)

4

[(
δ(0) +

ik

2L

)
I3 + 2(d + 2)I4

]

= L3 (d2 − 1)

120
δ(0) + L2 (d2 − 1) [7(d + 2) + 3ik]

720
, (84)

1

2

〈
Aint 1

,k [q]2
〉
0 = L2

2

{
(d − 1)L

12

[(
δ(0) +

d

2L

)
−

(
δk +

2

L

)]
− R

8

}2

+
(d − 1)

4

[
Hk

1 − 2
(
Hk

2 + Hk
3 − H5

)
+ H6 − 4d

(
Hk

4 − H7 − H10
)

+ H11 + 2d2(H8 + H9)
]

+
(d − 1)

4
[dH12 + 2(d + 2)H13 + dH14]

= L2 (d − 1)2[(d − 1) − ik]2

2 · 122
+ L3 (d − 1)

120
δ(0) + L2 (d − 1)

1440
[(13d2 − 6d + 21)

+ 4ik(2d + ik)] + L3 (d − 1)d

120
δ(0) + L2 (d − 1)

720
(29d − 1). (85)

In this way, we find the large-stiffness expansion of the path integral (77) up to order ε2:

P(k;L) = 1 + εL
(d − 1)

12
[(d − 1) − ik] + ε2L2 (d − 1)

1440
[(ik)2(5d − 1)

− 2ik(5d2 − 11d + 8) + (d − 1)(5d2 − 11d + 14)] + O(ε3). (86)

The Fourier transform (76) of expansion (86) yields the end-to-end distribution function

P(r; l) = S−1
d

{
δ(r − 1) +

l

6
[δ′(r − 1) + (d − 1)δ(r − 1)] +

l2

360(d − 1)
[(5d − 1)δ′′(r − 1)

+ 2(5d2 − 11d + 8)δ′(r − 1) + (d − 1)(5d2 − 11d + 14)δ(r − 1)] + O(l3)

}
.

(87)

This representation is convenient to calculate the moments

〈rn〉 = Sd

∫
dr rn+(d−1)P (r; l). (88)

Indeed, inserting the distribution function (87) into equation (88) yields directly the moments
(48) found before by the independent calculation.

To make the contact with the results of [23] derived in d = 3 dimensions, we rewrite the
distribution function (87) in the form

P(r; l) = 1

4π
[p0(l)δ(r − 1) + p1(l)δ

′(r − 1) + p2(l)δ
′′(r − 1) + p3(l)δ

′′′(r − 1) + · · ·],
(89)
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where the coefficients pi(l) are expanded for d = 3 up to order l3

p0(l) = 1 +
1

3
l +

13

180
l2 +

38

23 · 315
l3 + · · · = 1 +

2

3
t +

13

45
t2 +

38

315
t3 + · · · , (90)

p1(l) = 1

6
l +

1

18
l2 +

34

23 · 315
l3 + · · · = 1

3
t +

2

9
t2 +

34

315
t3 + · · · , (91)

p2(l) = 7

360
l2 +

1

23 · 21
l3 + · · · = 7

90
t2 +

1

21
t3 + · · · (92)

p3(l) = 31

23 · 1890
l3 + · · · = 31

1890
t3 + · · · . (93)

Inserting l = 2t in the last lines of equations (90)–(93) shows the agreement with the end-
to-end distribution function G(r; t) of [23] reduced to the form (89) after re-expansion in
appendix D.

Let us make now the contact with the distribution functions of [25]. To this end,
expansion (86) can be reassembled as

P(k;L) = P0(k;L)

{
1 +

(d − 1)

6
l +

[
(d − 3)

180(d − 1)
ik +

(5d2 − 11d + 14)

360

]
l2 + O(l3)

}
,

(94)

where we have factored out the series containing the expansion terms with the same powers
of ε, k and L,

P0(k;L) = 1 − (d − 1)

22 · 3
(ikεL) +

(d − 1)(5d − 1)

25 · 32 · 5
(ikεL)2 − · · · . (95)

By setting ω̂2 ≡ ikεL, we identify this with the beginning of the expansion of a functional
determinant,

P0(ω̂) =
(

ω̂

sinh ω̂

)(d−1)/2

= 1 − d − 1

12
ω̂2 +

(d − 1)(5d − 1)

1440
ω̂4 + · · · , (96)

valid for ω̂ small. One can replace, however, expansion (95) by the exact expression (96) for
P0(ω̂) and integrate over ω̂ in the Fourier transform (76). This would ignore the smallness of
ω̂. In such a way, the distribution function with the only determinant (96) was calculated for
d = 2, 3 in [25] from the ω̂-integral

P0(r; l) ∝ 1

l

∫ i∞

−i∞

dω̂

2π i
e−ω̂2(d−1)(r−1)/2l ω̂P0(ω̂), (97)

which was found to give, after a proper normalization, good radial end-to-end distribution
functions for large stiffness. It represents the leading contribution to the distribution
function (76), since P0(ω̂) enters equation (94) as a prefactor with no dependence on the
flexibility l. To find corrections, the rest of expansion (94) in powers of small l must be known
for all ω̂. This can be done by reorganizing the perturbation theory as follows.

The determinant (96) can directly be obtained from the path integral of a simple harmonic
oscillator with Neumann boundary conditions [15]:

Z0
ω ≡

∫
NBC

D′d−1q(s) e−A0
,ω[q] = P0(ω̂), (98)

where A0
,ω[q] is the harmonic action

A0
,ω[q] = 1

2

∫ L

0
ds[q̇2(s) + ω2q2(s)]. (99)



Perturbation theory for path integrals of stiff polymers 8247

With the redefinition ω2 ≡ ikε/L, it represents a ‘free’ part of the total action (79), whose
expansion in powers of small ε becomes

Atot
,k [q; ε] = A0

,ω[q] + εAint 1
e,ω [q] + · · · , (100)

while the first expansion term reads

Aint 1
,ω [q] =

∫ L

0
ds

[
1

2
(qq̇)2 − 1

2
δ(0)q2 +

1

8
ω2(q2)2

]
− 1

4
[q2(0) + q2(L)] − L

R

8
. (101)

Note that the interaction (101) contains the harmonic terms even at lowest order in ε.
The result (98) represents the leading term in the large-stiffness expansion for the path

integral (77). By expanding the path integral (77) with respect to the harmonic integral (98),
we find the higher-order fluctuation corrections. This yields

P(ω̂;L) = Z0
ω

(
1 − ε

〈
Aint 1

,ω [q]
〉
0

+ · · ·) , (102)

where the expectation values are evaluated using the basic propagator (13), which contains
now a harmonic Green function of the unperturbed action (99). With the zero-mode subtracted,
this Green function explicitly reads

	ω(s, s ′) = 2

L

∞∑
n=1

cos(nπs/L) cos(nπs ′/L)

ω2 + n2π2/L2

= cosh ω(L − |s − s ′|) + cosh ω(L − (s + s ′))
2ω sinh ωL

− 1

Lω2
. (103)

As a result, we obtain the next-to-leading contribution

〈
Aint 1

,ω [q]
〉
0

= −L
(d − 1)2

8
− L

(d − 1)

4

(
coth ω̂

ω̂
− 1

ω̂2

)

+ L
(d2 − 1)

32

(
coth2 ω̂ +

coth ω̂

2ω̂
− 3

2 sinh2 ω̂

)
. (104)

Substituting now the leading (98) and the next-to-leading (104) terms into expansion (102)
yields

P(ω̂; l) = P0(ω̂)R(ω̂; l), (105)

where the factor R(ω̂; l) for all ω̂ has the small-l expansion

R(ω̂; l) = 1 + l
(3d − 5)

16
− l

(d + 1)

32

(
coth ω̂

ω̂
− 1

sinh2 ω̂

)
+ l

1

2

(
coth ω̂

ω̂
− 1

ω̂2

)
+ O(l2).

(106)

Expanding (105) in powers of ω̂ for ω̂ small yields, of course, expansion (94) to the order
of l. Nevertheless the analytic form (105) is convenient for the use in the Fourier representation
(76) in terms of ω̂:

P(r; l) = (d − 1)

l
S−1

d

∫ i∞

−i∞

dω̂

2π i
e−ω̂2(d−1)(r−1)/2l ω̂P (ω̂; l). (107)

An important observation for performing the ω̂-integral (107) is now that the integrand
(105) can be expressed in terms of P0(ω̂), and the derivatives P ′

0(ω̂) and P ′′
0 (ω̂) with respect

to ω̂. To show this, we set

P0(ω̂) =
(

ω̂

sinh ω̂

)(d−1)/2

= e−f (ω̂), (108)
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with

f (ω̂) = (d − 1)

2
(log sinh ω̂ − log ω̂) . (109)

In terms of f (ω̂), the factor (106) becomes

R(ω̂; l) = 1 +
(3d − 5)l

16
− (d − 15)l

16(d − 1)

f ′(ω̂)

ω̂
− (d + 1)l

16(d − 1)
f ′′(ω̂). (110)

Substituting equations (108) and (110) into equation (105), we use the identities

−f ′(ω̂) e−f (ω̂) = P ′
0(ω̂),

(111)

−f ′′(ω̂) e−f (ω̂) = 2

(d + 1)
P ′′

0 (ω̂) − 2(d − 1)

(d + 1)ω̂
P ′

0(ω̂) − (d − 1)2

2(d + 1)
P0(ω̂).

This brings, finally, expansion (105) in the form

P(ω̂; l) =
[

1 +
(5d − 9)l

32

]
P0(ω̂) − (d + 13)l

16(d − 1)ω̂
P ′

0(ω̂) +
l

8(d − 1)
P ′′

0 (ω̂). (112)

With the representation (112), the integration of equation (107) is straightforward. We
substitute the binomial series

P0(ω̂) =
(

ω̂

sinh ω̂

)(d−1)/2

= (2ω̂)(d−1)/2
∞∑

k=0

(−1)k
(−(d − 1)/2

k

)
e−(2k+(d−1)/2)ω̂ (113)

and express the resulting integrals in terms of a parabolic cylinder functions. In the physical
case of three dimensions, where ω̂2 = ikl, the answer reads

P(r; l) = 1

4π
√

πl

∞∑
n=1

1

[(1 − r)/ l]3/2 exp

[
− (n − 1/2)2

(1 − r)/ l

]

×
{[

1 +
(n2 − n + 1)l

4

]
H2

[
n − 1/2√
(1 − r)/ l

]
+

3(n − 1/2)2l√
2

− (1 − r)

}
,

(114)

where the second Hermite polynomial is H2(x) = 4x2 − 2. The first term in the brackets
represents the leading contribution found before in [25], the others are the new next-to-leading
corrections. The proper normalization is ensured automatically in each perturbative order l in
the small-flexibility expansion. Since the next-to-leading terms are suppressed as l ∼ 1/κ ,
there is no drastic change in the behaviour of the radial distribution with respect to the leading
contribution.

8. Conclusion

In conclusion, we have developed a systematic perturbation theory capable of yielding the
polymer properties near the rod limit from a path integral formulation. This has yielded
the large-stiffness expansions for the experimentally relevant end-do-end distribution, all the
even and odd moments, and the correlation function in d dimensions as power series in
the flexibility l up to the order l2. All these results have been obtained without the use of the
diffusion equation on a unit sphere. In subsequent work we shall use variational perturbation
theory [15, 41] to extend the results from small to large flexibility, i.e., to find results connecting
the above results smoothly with the random-chain limit.
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Appendix A. Basic integrals

The following well-defined integrals appear throughout the calculation of the Feynman
diagrams:

	(0, 0) = 	(L,L) = L

3
, (A.1)

I1 =
∫ L

0
ds 	(s, s) = L2

6
, (A.2)

I2 =
∫ L

0
ds 	̇2(s, s) = L

12
, (A.3)

I3 =
∫ L

0
ds 	2(s, s) = L3

30
, (A.4)

I4 =
∫ L

0
ds 	(s, s) 	̇2(s, s) = 7L2

360
, (A.5)

I5 =
∫ L

0
ds

∫ L

0
ds ′ 	2(s, s ′) = L4

90
, (A.6)

	(0, L) = 	(L, 0) = −L

6
, (A.7)

I6 =
∫ L

0
ds[	2(s, 0) + 	2(s, L)] = 2L3

45
, (A.8)

I7 =
∫ L

0
ds

∫ L

0
ds ′ 	(s, s) 	̇2(s, s ′) = L3

45
, (A.9)

I8 =
∫ L

0
ds

∫ L

0
ds ′ 	̇(s, s)	(s, s ′) 	̇(s, s ′) = L3

180
, (A.10)

I9 =
∫ L

0
ds 	(s, s)[ 	̇2(s, 0) + 	̇2(s, L)] = 11L2

90
, (A.11)

I10 =
∫ L

0
ds 	̇(s, s)[	(s, 0) 	̇(s, 0) + 	(s, L) 	̇(s, L)] = 17L2

360
, (A.12)

	̇(0, 0) = − 	̇(L,L) = −1

2
, (A.13)

I11 =
∫ L

0
ds

∫ L

0
ds ′ 	(s, s)	 (̇s, s ′) 	̇(s ′, s ′) = L3

360
, (A.14)

I12 =
∫ L

0
ds

∫ L

0
ds ′ 	(s, s ′) 	̇2(s, s ′) = L3

90
. (A.15)

Appendix B. Loop integrals

We list here the Feynman integrals evaluated with dimensional regularization rules whenever
necessary. In the calculation, they occur either from the expectations (45)–(47), or from
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the expectations (83)–(85). Accordingly, we encounter the integrals depending either on
ρn(s) = δn +[δ(s)+δ(s −L)]/2 with δn = δ(0)−σn/L, or on ρk(s) = δk +[δ(s)+δ(s −L)]/2
with δk = δ(0) − ik/L:

H
n(k)
1 =

∫ L

0
ds

∫ L

0
ds ′ ρn(k)(s)ρn(k)(s

′)	2(s, s ′)

= δ2
n(k)I5 + δn(k)I6 +

1

2
[	2(0, 0) + 	2(0, L)], (B.1)

H
n(k)
2 =

∫ L

0
ds

∫ L

0
ds ′ ρn(k)(s

′)	(s, s) 	̇2(s, s ′) = δn(k)I7 +
I9

2
, (B.2)

H
n(k)
3 =

∫ L

0
ds

∫ L

0
ds ′ ρn(k)(s

′) 	̇̇(s, s)	2(s, s ′) =
[
δn(k)I5 +

I6

2

]
δ(0), (B.3)

H
n(k)
4 =

∫ L

0
ds

∫ L

0
ds ′ ρn(k)(s

′) 	̇(s, s) 	̇(s, s ′)	(s, s ′) = δn(k)I8 +
I10

2
. (B.4)

When calculating Zn, we need to insert here δn = δ(0) − σn/L, thus obtaining

Hn
1 = L4

90
δ2(0) +

L3

45
(3 − d − n)δ(0) +

L2

360
[(45 − 24d + 4d2) − 4n(6 − 2d − n)], (B.5)

Hn
2 = L3

45
δ(0) +

L2

180
(15 − 4d − 4n), (B.6)

Hn
3 = L4

90
δ2(0) +

L3

90
(3 − d − n)δ(0), (B.7)

Hn
4 = L3

180
δ(0) +

L2

720
(21 − 4d − 4n), (B.8)

where the values for n = 0 correspond to the partition function Z = Z0. The substitution
δk = δ(0) − ik/L, required for the calculation of P(k;L), yields

Hk
1 = L4

90
δ2(0) +

L3

45
[2 + (−ik)] δ(0) +

L2

90
(−ik) [4 + (−ik)] +

5L2

72
, (B.9)

Hk
2 = L3

45
δ(0) +

L2

180
[11 + 4(−ik)], (B.10)

Hk
3 = L4

90
δ2(0) +

L3

90
[2 + (−ik)] δ(0), (B.11)

Hk
4 = L3

180
δ(0) +

L2

720
[17 + 4(−ik)]. (B.12)

The other loop integrals are

H5 =
∫ L

0
ds

∫ L

0
ds ′ 	(s, s) 	̇2(s, s ′) 	̇̇(s ′, s ′) = δ(0)I7 = L3

45
δ(0), (B.13)

H6 =
∫ L

0
ds

∫ L

0
ds ′ 	̇̇(s, s)	2(s, s ′) 	̇̇(s ′, s ′) = δ2(0)I5 = L4

90
δ2(0), (B.14)
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H7 =
∫ L

0
ds

∫ L

0
ds ′ 	̇(s, s) 	̇(s, s ′)	(s, s ′) 	̇̇(s ′, s ′) = δ(0)I8 = L3

180
δ(0), (B.15)

H8 =
∫ L

0
ds

∫ L

0
ds ′ 	̇(s, s) 	̇(s, s ′)	 (̇s, s ′) 	̇(s ′, s ′) = − L2

720
, (B.16)

H9 =
∫ L

0
ds

∫ L

0
ds ′ 	̇(s, s)	(s, s ′) 	̇̇(s, s ′) 	̇(s ′, s ′)

= I10

2
− I8

L
− H8 = 7L2

360
, (B.17)

H10 =
∫ L

0
ds

∫ L

0
ds ′ 	(s, s) 	̇(s, s ′) 	̇̇(s, s ′) 	̇(s ′, s ′) = I9

4
− I7

2L
= 7L2

360
, (B.18)

H11 =
∫ L

0
ds

∫ L

0
ds ′ 	(s, s) 	̇̇ 2(s, s ′)	(s ′, s ′)

= δ(0)I3 +

(
I1

L

)2

− 2(I3 − I11)

L
− 2I4 + 2[	2(L,L)	 (̇L,L)

− 	2(0, 0)	 (̇0, 0)] − 2H10 = L3

30
δ(0) +

L2

9
, (B.19)

H12 =
∫ L

0
ds

∫ L

0
ds ′ 	̇2(s, s ′)	̇ 2(s, s ′) = L2

90
, (B.20)

H13 =
∫ L

0
ds

∫ L

0
ds ′ 	(s, s ′) 	̇(s, s ′)	 (̇s, s ′) 	̇̇(s ′, s)

= I4

2
− I12

2L
− H12

2
= − L2

720
, (B.21)

H14 =
∫ L

0
ds

∫ L

0
ds ′ 	2(s, s ′) 	̇̇ 2(s, s ′)

= δ(0)I3 − 2(I3 − I12)

L
− 2I4 +

I5

L2
, +2[	2(L,L)	 (̇L,L)

− 	2(0, 0)	 (̇0, 0)] − 2H13 = L3

30
δ(0) +

11L2

72
. (B.22)

Calculating the integrals (B.17)–(B.22) required the regularization rules of [37, 38]. To
compute these unambiguously, we must first use partial integrations together with Neumann
boundary conditions so that we can apply subsequently the equation 	̈(s, s ′) = 	̈ (s, s ′) =
1/L−δ(s, s ′). In this way, most of the integrals can be expressed in terms of the basic integrals
in appendix A. For the integrals (B.19) and (B.22), the above procedure had to be applied
twice.

Appendix C. Integrals involving Green functions with arbitrary constant

To demonstrate the translational invariance of results showed in the main text we use the
modified Green function

	(s, s ′) = L

3
a − |s − s ′|

2
− (s + s ′)

2
+

(s2 + s ′2)
2L

, (C.1)

with an arbitrary constant a. The various relations fulfilled by this Green function are listed
below assuming s � s ′, for brevity.
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The useful relations are

	F(s, s
′) = 	F(s − s ′) = 	(s, s ′) − 1

2
	(s, s) − 1

2
	(s ′, s ′) = −1

2
(s − s ′), (C.2)

D1(s, s
′) = 	2(s, s ′) − 	(s, s)	(s ′, s ′)

= (s − s ′)
[
s(L − s)

L
+

(s − s ′)(s + s ′)2

4L2
− La

3

]
, (C.3)

D2(s, s
′) = 	(s, s) − 	(s ′, s ′) = (s − s ′)(s + s ′ − L)

L
. (C.4)

The useful integrals are

J1(s, s
′) =

∫ L

0
dt 	(t, t) 	̇(t, s) 	̇(t, s ′) = (s4 + s ′4)

4L2
− (2s3 + s ′3)

3L

+
((a + 3)s2 + as ′2)

6
− sa

3
L +

(20a − 9)

180
L2, (C.5)

J2(s, s
′) =

∫ L

0
dt 	̇(t, t)	(t, s) 	̇(t, s ′)

= (−2s4 + 6s2s ′2 + 3s ′4)
24L2

+
(3s3 − 3s2s ′ − 6ss ′2 − s ′3)

12L

− (5s2 − 12ss ′ − 4as ′2)
24

− s ′a
6

L +
(20a − 3)

720
L2, (C.6)

J3(s, s
′) =

∫ L

0
dt 	(t, s)	(t, s ′) = − (s4 + 6s2s ′2 + s ′4)

60L
+

(s2 + 3s ′2)s
6

− (s2 + s ′2)
6

L +
(5a2 − 10a + 6)

45
L3. (C.7)

These are the building blocks for other relations

〈U2(s, s
′)〉 = (d − 1)

2

[
D1(s, s

′) − (d + 1)

4
D2

2(s, s
′)
]

= − (d − 1)(s − s ′)
4

[
2La

3
+

(d − 3)s − (d + 1)s ′

2

− (d − 1)s2 − (d + 1)s ′2

L
+

d(s − s ′)(s + s ′)2

2L2

]
, (C.8)

K1(s, s
′) = J1(s, s

′) − 1

2
J1(s, s) − 1

2
J1(s

′, s ′)

= −(s − s ′)
[
La

6
− (s + s ′)

4
+

(s2 + ss ′ + s ′2)
6L

]
, (C.9)

K2(s, s
′) = J2(s, s

′) + J2(s
′, s) − J2(s, s) − J2(s

′, s ′)

= −(s − s ′)2

[
1

4
− (5s + 7s ′)

12L
+

(s + s ′)2

4L2

]
, (C.10)

K3(s, s
′) = J3(s, s

′) − 1

2
J3(s, s) − 1

2
J3(s

′, s ′)

= −(s − s ′)2

[
(s + 2s ′)

6
− (s + s ′)2

8L

]
, (C.11)
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K4(s, s
′) = 	(0, s)	(0, s ′) − 1

2
	2(0, s) − 1

2
	2(0, s ′)

= − (s − s ′)2(s + s ′ − 2L)2

8L2
, (C.12)

K5(s, s
′) = 	(L, s)	(L, s ′) − 1

2
	2(L, s) − 1

2
	2(L, s ′) = − (s2 − s ′2)2

8L2
. (C.13)

Appendix D. Relation with distribution from diffusion equation

The distribution function derived in [23] for d = 3 dimensions has the form

G(r; t) = 1

4π

[
f0(t)δ(r − 1) +

f1(t)

r
δ′(r − 1) +

f2(t)

r
δ′′(r − 1) +

f3(t)

r
δ′′′(r − 1) + · · ·

]
,

(D.1)

where the coefficients fi(t) are the polynomials in powers of t. To order t3, their expansions
read

f0(t) = 1 +
1

3
t +

1

15
t2 +

4

315
t3 + · · · , (D.2)

f1(t) = f0(t) − 1, (D.3)

f2(t) = 7

90
t2 − 1

630
t3 + · · · , (D.4)

f3(t) = 31

1890
t3 − · · · . (D.5)

Depending on the reduced distance r, expression (D.1) cannot be directly comparable with the
distribution function (89). To remove this, we expand

1

r
= 1

(r − 1) + 1
= 1 − (r − 1) + (r − 1)2 − (r − 1)3 + · · · . (D.6)

Substituting expansion (D.6) into equation (D.1), we use the properties of δ-function

xδ′(x) = −δ(x), xnδ′(x) ≡ 0, n > 1, (D.7)

xδ′′(x) = −2δ′(x), x2δ′′(x) = 2δ(x), xnδ′(x) ≡ 0, n > 2, (D.8)

xδ′′′(x) = −3δ′′(x), x2δ′′′(x) = 6δ′(x), x3δ′′′(x) = −6δ(x),

xnδ′(x) ≡ 0, n > 3. (D.9)

This brings the distribution function (D.1) in the form (89) with

p0(t) = 2f0(t) + 2
f2(t)

t
+ 6

f3(t)

t2
− 1 + · · · = 1 +

2

3
t +

13

45
t2 +

38

315
t3 + · · · , (D.10)

p1(t) = f0(t) + 2
f2(t)

t
+ 6

f3(t)

t2
− 1 + · · · = 1

3
t +

2

9
t2 +

34

315
t3 + · · · , (D.11)

p2(t) = f2(t)

t
+ 3

f3(t)

t2
+ · · · = 7

90
t2 +

1

21
t3 + · · · , (D.12)

p3(t) = f3(t)

t2
+ · · · = 31

1890
t3 + · · · . (D.13)
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